Helical distribution of the bacterial chemoreceptor via colocalization with the Sec protein translocation machinery
نویسندگان
چکیده
In Escherichia coli, chemoreceptor clustering at a cell pole seems critical for signal amplification and adaptation. However, little is known about the mechanism of localization itself. Here we examined whether the aspartate chemoreceptor (Tar) is inserted directly into the polar membrane by using its fusion to green fluorescent protein (GFP). After induction of Tar-GFP, fluorescent spots first appeared in lateral membrane regions, and later cell poles became predominantly fluorescent. Unexpectedly, Tar-GFP showed a helical arrangement in lateral regions, which was more apparent when a Tar-GFP derivative with two cysteine residues in the periplasmic domain was cross-linked to form higher oligomers. Moreover, similar distribution was observed even when the cytoplasmic domain of the double cysteine Tar-GFP mutant was replaced by that of the kinase EnvZ, which does not localize to a pole. Observation of GFP-SecE and a translocation-defective MalE-GFP mutant, as well as indirect immunofluorescence microscopy on SecG, suggested that the general protein translocation machinery (Sec) itself is arranged into a helical array, with which Tar is transiently associated. The Sec coil appeared distinct from the MreB coil, an actin-like cytoskeleton. These findings will shed new light on the mechanisms underlying spatial organization of membrane proteins in E. coli.
منابع مشابه
Stepwise evolution of the Sec machinery in Proteobacteria.
The Sec machinery facilitates the translocation of proteins across and into biological membranes. In several of the Proteobacteria, this machinery contains accessory features that are not present in any other bacterial division. The genomic distribution of these features in the context of bacterial phylogeny suggests that the Sec machinery has evolved in discrete steps. The canonical Sec machin...
متن کاملUniversity of Groningen The bacterial sec machinery
It has been proposed that the bitopic membrane protein SecG undergoes topology inversion during translocation of (pre)proteins via SecYEG. Here we show that SecG covalently cross-linked to SecY cannot invert its topology while remaining fully functional in protein translocation. Our results strongly disfavor topology inversion of SecG during protein translocation.
متن کاملThe Maize tha4 Gene Functions in Sec-Independent Protein Transport in Chloroplasts and Is Related to hcf106, tatA, and tatB
Proteins are translocated across the chloroplast thylakoid membrane by a variety of mechanisms. Some proteins engage a translocation machinery that is derived from the bacterial Sec export system and require an interaction with a chloroplast-localized SecA homologue. Other proteins engage a machinery that is SecA-independent, but requires a transmembrane pH gradient. Recently, a counterpart to ...
متن کاملSignal peptide cleavage in the E . coli membrane
Department of Biochemistry and Molecular Biology, University of British Columbia, Vancouver, B.C. Canada V6T 1Z3 Abstract Our laboratory uses x-ray crystallography and other structural biology techniques in the analysis of bacterial membrane proteins and membrane protein complexes. We are particularly interested in bacterial protein secretion machinery, including the Sec-dependent translocation...
متن کاملArchaeal and bacterial SecD and SecF homologs exhibit striking structural and functional conservation.
The majority of secretory proteins are translocated into and across hydrophobic membranes via the universally conserved Sec pore. Accessory proteins, including the SecDF-YajC Escherichia coli membrane complex, are required for efficient protein secretion. E. coli SecDF-YajC has been proposed to be involved in the membrane cycling of SecA, the cytoplasmic bacterial translocation ATPase, and in t...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Molecular Microbiology
دوره 60 شماره
صفحات -
تاریخ انتشار 2006